
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 41. NO. I ? ,  DECEMBER 1994 

Macromolecular Bioactivity: Is 
It Resonant Interaction Between 

Macromolecules?-Theory and Applications 
Irena Cosic, Member, IEEE 

Abstract- Biological processes in any living organism are 
based on selective interactions between particular biomolecules. 
In most cases, these interactions involve and are driven by 
proteins which are the main conductors of any living process 
within the organism. The physical nature of these interactions 
is still not well known. This paper represents a whole new 
view to biomolecular interactions, in particular protein-protein 
and protein-DNA interactions, based on the assumption that 
these interactions are electromagnetic in their nature. This new 
approach is incorporated in the Resonant Recognition Model 
(RRM), which was developed over the last 10 years. It has been 
shown initially that certain periodicities within the distribution 
of energies of delocalized electrons along a protein molecule are 
critical for protein biological function, i.e., interaction with its 
target. If protein conductivity was introduced, then a charge 
moving through protein backbone can produce electromagnetic 
irradiation or absorption with spectral characteristics corre- 
sponding to energy distribution along the protein. The RRM 
enables these spectral characteristics, which were found to be in 
the range of infrared and visible light, to be calculated. These 
theoretically calculated spectra were proved using experimen- 
tally obtained frequency characteristics of some light-induced 
biological processes. Furthermore, completely new peptides with 
desired spectral characteristics, and consequently corresponding 
biological activities, were designed. 

I. INTRODUCTION 
HE ENTIRE genetic information of any living organism T is written as linear information within DNA sequences 

and is coded by four different nucleotides. DNA molecules 
serve as backup for complete genetic information for the 
whole organism. The particular and well-defined fragments 
of this information, so-called coding sequences, are then 
translated, using complex molecular mechanisms, into other 
linear information then contained within protein sequences and 
coded with 20 different amino acids. 

Proteins are the main conductors and workforce in any 
living process within a cell, tissue or organism. They are com- 
posed of sequentially linked amino acids but can only express 
their biological function when they achieve a certain active 
three-dimensional (3-D) structure. Their biological function as 
well as their active (3-D) structure is determined primarily by 
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the amino acid sequence within the protein. Although both 
function and structure of a number of proteins are known, the 
crucial problem of understanding how the biological function 
and active 3-D structure are “written” within the protein 
sequence still remains. If biological function is considered 
as selective interaction of protein and its target, then a more 
fundamental question arises: What is the physical basis of this 
interaction and how is this selectivity achieved? Once this 
understanding has been gained, it should be possible to design 
peptides and even proteins de novo, with the chosen biological 
function, and thus to produce new and more efficient drugs and 
other biotechnological products. 

There have been many attempts to discover the rules govem- 
ing the coding of the biological function into the sequence of 
amino acids within the protein. Typical approaches deal with 
either homology characterization of specific features of the 
primary and secondary structure of proteins or molecular mod- 
eling of protein tertiary structure. Although such approaches 
permit a significant insight into protein structure and active site 
location, they still do not provide sufficient knowledge about 
the informational, structural and physicochemical parameters 
crucial to the selectivity of protein interactions which can 
be used for de novo design of peptide or protein analogs 
with the desired biological activity. The existing knowledge 
in the field of computer-aided molecular modeling and protein 
structure/function analysis can be classified in terms of the of 
primary, secondary and tertiary structure analysis of proteins. 

A.  Primary Structure Analysis 
Primary structure analysis is concemed mainly with the 

search for homologies among amino acid sequences. The main 
concept behind this method is that proteins with the same 
biological function share amino acid sequence alignments 
and these homologous fragments carry the main information 
about the protein function [ 11-[3]. However, similar sequences 
may appear occasionally in totally unrelated proteins, through 
convergent evolution of sequences with similar properties. 
On one hand, there are a number of cases of unexpected 
but significant resemblances between functionally dissimilar 
proteins, while on the other hand, there are cases of insignif- 
icant resemblance between functionally related peptides [3]. 
Thus, the available methods rarely reach a satisfactory level 
of predictive accuracy for de novo prediction of the biological 
function from sequence similarities or for rational peptide 
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design. Optimal alignment programs [2] with certain new 
improvements in sequence analysis are designed to distinguish 
between analogous and homologous sequences, but they are 
still based on sequence similarities. Problems remaining with 
optimal alignment programs include difficulties associated 
with the length of the sequence string and insertion of gaps in 
order to increase the number of matching residues. Inserting 
gaps too liberally and assigned gap-weights arbitrarily can lead 
to biologically irrelevant alignments. Combination of primary, 
secondary and tertiary structure homologies to overcome some 
of these problems has recently been attempted [4]. 

B .  Secondary Structure Analysis and Predictions 

In the absence of experimental knowledge about protein 
secondary structure, various empirical, computer-aided algo- 
rithms are available for its prediction from the known primary 
structure [5], with results often presented in the form of 
preferred regions of regular secondary folding for a given 
peptide chain 161, [7]. Most of these algorithms are based 
on the average probability that any particular amino acid 
residue will be found in an a-helical, &sheet or “random coil” 
conformation [5]-[7]. While these approaches can be relatively 
successful in predicting secondary structure (with probabilities 
in the region of 6&70% with selected examples) [6] ,  direct 
relationships to protein function cannot generally be described 
with these methods [SI. 

C. Tertiary Structure Analysis 

The folding of the linear, primary polymer chain of a protein 
into a defined 3-D structure results in a spatial relationship 
between the various constituent amino acids which is found 
to be crucial for determining the functional behavior of the 
protein. In particular, a widely accepted model of protein inter- 
actions proposes that selectivity of these interactions is based 
on the structural matching between active sites of interacting 
molecules. Experimentally, the tertiary structure and stability 
of proteins have been studied using such techniques as X-ray 
crystallography, circular dichroism, fluorescence spectroscopy 
and 2-D NMR [9]. However, these methods have been limited 
due to the need for relatively large amounts of protein and 
the inability of many techniques to detect low abundances of 
conformational intermediates. These methods may also be lim- 
ited by structural distortions caused by particular techniques, 
e.g., crystallization. The increasing data base of experimentally 
derived protein primary structures combined with the computer 
algorithms for performing molecular mechanics and dynamics 
has the potential to establish computational algorithms as a 
powerful tool to study protein tertiary structure and predict 
peptide/protein active conformations [lo]-[ 121. These methods 
are still not able to predict protein 3-D structure solely from its 
sequence, and thus they usually use a number of constraints 
from experimental measurements, or they are based on the 
sequential and functional homology to the proteins with known 
3-D structure. 

Although all of these techniques have significant success 
in prediction of protein structure and/or function, they are 
still not sufficient for understanding protein interactions, and 

consequently for the design of peptides or proteins with desired 
bioactivity. The lack of knowledge about the informational 
parameters of protein sequence important to the protein bi- 
ological function, as well as a lack of understanding of the 
physical processes which are behind the biological activity of 
the proteins, has limited the success of these techniques. The 
investigations presented in this paper are aimed at solving 
some of these problems. 

11. RESONANT RECOGNITION MODEL (RRM) 

The new physicomathematical approach presented here is 
called the Resonant Recognition Model (RRM) [ 131-[22]. The 
RRM is based on the representation of the protein primary 
structure as a numerical series by assigning to each amino 
acid a physical parameter value relevant to the protein’s 
biological activity. Although a number of amino acid indices 
(222 have been published up to now 1231, 1241) have been 
found to correlate in some way with the biological activity 
of the whole protein, our investigations [ 131-[22], as well as 
studies of other authors [25]-[27], have shown that the best 
correlation can be achieved with parameters which are related 
to the energy of delocalized electrons of each amino acid. 
These findings can be explained by the fact that the electrons 
delocalized from the particular amino acid have the strongest 
impact on the electronic distribution of the whole protein. In 
our studies, the energy of delocalized electrons (calculated as 
the electron-ion interaction pseudopotential, EIIP 1281, [29]) 
of each amino acid residue was employed. The resulting 
numerical series then represented the distribution of the free 
electrons’ energies along the protein. This numerical series 
was then converted into a discrete Fourier spectrum which 
carried the same information content about the arrangement 
of amino acids in the sequence as the original numerical 
sequence [30]. The initial step in the RRM, where protein 
sequences are represented as numerical spectra, was named 
Informational Spectrum Method (ISM) 1131, [ 151. Later, when 
it was found that proteins can recognize their targets on the 
basis of the same characteristic frequency, which is in fact 
resonant recognition, the whole model was renamed with a 
more appropriate name: The Resonant Recognition Model 
(RRM). 

Approaches similar to the RRM, based on the Fourier 
transform and physical characteristics of amino acids, have 
been successfully applied by Mandell who has shown that 
the characteristic hydrophobic mass energy Fourier modes 
are signatures of isomorphism and immunological reactivates 
[31]. Viari et al. have used our RRM approach with scale 
independent coding to localize biologically relevant pattems 
in calcium-binding proteins [32]. 

A.  Definition of Common Frequency Characteristics 

The RRM is a physical and mathematical model which 
interprets protein sequence linear information using signal 
analysis methods. It comprises two stages: The first involves 
the transformation of the amino acid sequence into a numerical 
sequence. Each amino acid is represented by the value of the 
electron-ion interaction potential (EIIP) [ 161 which describes 
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TABLE I 

VALUES FOR NUCLEOTIDES AND AMINO ACIDS 
nucleotide EIIP (Ry) 

THE ELECTRON-ION INTERACTION POTENTIAL (EIIP) 

A 0.1260 
G 0.0806 
T 0. I335 
C 0.1340 

amino acid EJIP (Ry) 

Leu 
[le 
Asn 

Val 
Glu 
Pro 
His 

Ala 

GlY 

Lys 

TYr 
T ‘P 
Gln 
Met 
Ser 

Thr 
Phe 
Arg 
Asp 

cys 

0.0000 
0.0000 
0.0036 
0.0050 
0.0057 
0.0058 
0.0198 
0.0242 
0.037 I 
0.0373 
0.05 16 
0.0548 
0.0761 
0.0823 
0.0829 
0.0829 
0.0941 
0.0946 
0.0959 
0. I263 

the average energy states of all valence electrons, in particular 
amino acids. The EIIP values for each amino acid were 
calculated using the following general model pseudopotential 
[ 291 : 

+ i  
( k  + y l w l  k ) = 0 . 2 5 Z s i n ( ~ l . O 4 2 ) / ( 2 ~ )  

where q is a change of momentum k of the delocalized electron 
in the interaction with potential U), while 

2 = ( C Z i ) / N  

where 2, is the number of valence electrons of the %-th 
component of each amino acid and N is the total number 
of atoms in the amino acid. The EIIP values for 20 amino 
acids, as well as for five nucleotides (the whole procedure can 
be applied to the DNA and RNA, too), are shown in Table I. 
Each amino acid or nucleotide, irrespective of its position in 
a sequence, can thus be represented by a unique number. 

Numerical series obtained this way are then analyzed by 
digital signal analysis methods in order to extract information 
pertinent to the biological function. The original numerical 
sequence is transformed to the frequency domain using the 
discrete Fourier transform (DFT). As the average distance be- 
tween amino acid residues in a polypeptide chain is about 3.8 
A, it can be assumed that the points in the numerical sequence 
derived are equidistant. For further numerical analysis, the 
distance between points in these numerical sequences is set at 
an arbitrary value d = 1. Then, the maximum frequency in the 
spectrum is F = 1/2 d = 0.5. The total number of points in the 
sequence influences the resolution of the spectrum only. Thus, 
for N-point sequence the resolution in the spectrum is equal 
to 1/N. The 71-th point in the spectral function corresponds to 
the frequency f = n / N .  

In order to extract common spectral characteristics of se- 
quences having the same or similar biological function, the 
following cross-spectral function was used: 

s, = x,,Y,: 11 = 1 . 2 . .  . . , N / 2  

where X,, are the DFT coefficients of the series .r(7n) and 1;; 
are complex conjugate DFT coefficients of the series y(m). 
Peak frequencies in the amplitude cross-spectral function 
define common frequency components of the two sequences 
analyzed. The whole procedure: protein sequence - numerical 
serie? + amplitude spectra - cross-spectra, is represented in 
Fig. 1 using the example of acidic and basic fibroblast growth 
factors. 

To determine the common frequency components for a 
group of protein sequences, we have calculated the absolute 
values of multiple cross-spectral function coefficients Al.  
which are defined as follows: 

Peak frequencies in such a multiple cross-spectral function 
denote common frequency components for all sequences an- 
alyzed. Signal-to-noise ratio ( S / N )  for each peak is defined 
as a measure of similarity between sequences analyzed. S / N  
is calculated as the ratio between signal intensity at the 
particular peak frequency and the mean value over the whole 
spectrum. The extensive experience gained from previous 
research [ 131-[22] suggests that an SIN ratio of at least 20 can 
be considered significant. The multiple cross-spectral function 
for a large group of sequences with the same biological 
function has been named “consensus spectrum.” The presence 
of a peak frequency with a significant signal-to-noise ratio in a 
consensus spectrum implies that all of the analyzed sequences 
within the group have one frequency component in common. 
This frequency is related to the biological function provided 
the following criteria are met: 

1 )  One peak only exists for a group of protein sequences 

2) No significant peak exists for biologically unrelated 

3) Peak frequencies are different for different biological 

In our previous studies, the above criteria have been tested 
with over 1000 proteins from 25 functional groups [ 131-[22]. 
Multiple cross-spectral functions of four different functional 
groups of proteins are represented in Fig. 2. The regulatory 
DNA sequences were analyzed in the same way. The following 
fundamental conclusion was drawn from our studies: Each 
specific biological function of protein or regulatory DNA 
sequence is characterized by a single frequency. 

These results are summarized in Table I1 where each func- 
tional group of proteins or DNA regulatory sequences is shown 
with its characteristic frequency and corresponding SIN ratio 
within the multiple cross-spectral function. 

sharing the same biological function. 

protein sequences. 

functions. 

B .  The Physical Meaning of the Characteristic Frequency 

The correlation between the amplitude spectrum of numeri- 
cal representation of genetic sequences and the corresponding 
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FGF basic bovine FGF acidic bovine 
PALPEDGGSGAFPPGHFKDPKRLYCKNGGF FNLPLGNYKKPKLLYCSNGGYFLRILPDGT 
FLRIHPDGRVDGVREKSDPHIKLQLQAEER VDGTKDRSDQHIQLQLCAESIGEVYIKSTE 
GWSIKGVCANRYLAMKEDGRLLASKCVTD TGQFLAMDTDGLLYGSQTPNEECLFLERLE 
ECFFFERLESNNYNTYRSRKYSSWYVALKR ENHYNTYISKKHAEKHWFVGLKKNGRSKLG 
TGQYKLGPKTGPGQKAILFLPMSAKS PRTHFGQKAILFLPLPVSSD 

E''r  I I I I I I I 

. C . a " C * C C  

&flit n .. A , 4,L A 
o z  0 .  0 .  0 5  

F R C P " E * C I  

(d) 

Fig. 1. The RRM procedure: (a) sequences of basic and acidic bovine FGF's, (b) graphical representation of the corresponding numerical sequences obtained 
by replacing every amino acid with its EIIP value; (c) spectra of both basic and acidic FGF; (d) cross-spectral function of the spectra presented in (c). The 
prominent peaks denote common frequency components. The abscissa represents RRM frequencies and the ordinate is normalized intensity. 

biological function presented previously can lead to a com- 
pletely new approach to protein dynamics. Each frequency 
in the RRM characterizes one biological function. To grasp 
the meaning of characteristic frequency, it is important first 
to understand what is meant by the biological function of 
proteins. Each biological process involves a number of inter- 
actions between proteins and their targets (other protein, DNA 
regulatory segment or small molecule). Each of these pro- 
cesses involves energy transfer between interacting molecules. 
These interactions are highly selective and this selectivity is 
defined within the protein structure. Protein and their protein 
or DNA targets have been analyzed to find out whether 

RRM characteristic frequencies denote a parameter which 
describes this selectivity between interacting molecules. It 
has been shown that proteins and their DNA or protein 
targets share the same characteristic frequency [ 131, [151, 
[17], [22], but of opposite phase [17], [22]  for each in a 
pair of interacting macromolecules. Thus, it can be postulated 
that RRM characteristic frequencies characterize not only 
general functions but also provide recognition between a 
particular protein and its target (receptor, ligand, etc.). As this 
recognition arises from the matching of periodicities within the 
distribution of energies of free electrons along the interacting 
proteins, it can be regarded as resonant recognition. The whole 
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TABLE I1 
CHARACTERISTIC RRM FREQUENCIES FOR DIFFERENT FUNCTIONAL 

GROUPS OF PROTE~NS AND DNA REGULATORY SEQUENCES 

MOLECULE TYPE FREQ. No SEQ. S/N ERROR 

DNA REGULATORY SEQUENCES 

promoters ,34375 
operators ,078 13 
SOS operators ,46875 
enhancejs ,04883 

PROTEIN SEQUENCES 

oncogenes 
kinases 
fibrinogens 
ACH receptors 
phages' repressors 
bacterial repress. 
heat shock proteins 
interferons 
hemoglobins 
signal proteins 
protease inhibitors 
proteases 
restriction enzymes 
amylases 
neurotoxins 
growth factors 
ins.-like(1GF 1.11) 
FGFs 
glucagons 
homeo box proteins 
cytochromes B 
cytochromes C 
myoglobins 
lysozymes 
phospholipases 
actins 
myosins 
RNA polymerases 

.03 130 
,42969 
,44230 
,49219 
,10547 
,08398 
,09473 
,08203 
,02340 
,14063 
,35550 
,37700 
,29102 
,41211 
,0703 1 
,29297 
,49220 
,45120 
,32030 
,04590 
,05900 
,47656 
.08200 
,32810 
,04300 
,48000 
.34ooo 
,35693 

53 
8 
5 
10 

46 
8 
5 
21 
4 
4 
IO 
18 
I87 
5 
27 
80 
3 
12 
16 
I05 
12 
7 
13 
9 
16 
38 
49 
15 
29 
12 
1 1  
IO 

128 ,016 
44 ,008 
13 ,050 
467 ,024 

468 ,004 
71 ,003 
99 .001 
137 ,002 
51 ,005 
56 ,004 
326 ,005 
I17 ,008 
119 ,008 
31 ,016 
203 ,008 
511 ,004 
36 ,004 
170 ,002 
60 ,004 
200 ,016 
12 ,008 
121 ,005 
71 ,034 
loo .001 
201 ,004 
252 ,004 
128 ,004 
124 ,004 
115 ,004 
163 ,002 
201 ,004 
256 ,001 

process can be observed as the interaction between transmit- 
ting and receiving antennae of a radio system. The RRM model 
assumes that characteristic frequencies are responsible for 
resonant recognition between macromolecules at a distance. 
Thus, these frequencies have to represent oscillations of some 
physical field which can propagate through water dipoles. One 
possibility is that this field is electromagnetic in nature. There 
is evidence that proteins and DNA have certain conducting 
properties [33], [34]. If so, charges would be moving through 
the backbone of the macromolecule and pass through different 
energy stages caused by different side groups of various 
amino acids or nucleotides. This process provides sufficient 
conditions for the emission of electromagnetic waves. Their 
frequency range depends on charge velocity, which then 
depends on the nature of charge movement (superconductive, 
conductive, soliton transfer, etc.) and on the energy of the field 
that causes charge transfer. The nature of this physical process 
is still unknown. Some models of charge transfer through the 
backbone of macromolecules have been accepted [31], [32] .  
Each of these models shows that charge transfer through the 
backbone of macromolecules is possible but the complexity 
of the system does not allow for precise calculations of 
charge velocity, and furthermore it is not possible to find 
any correlation between charge transfer and the biological 

l-AL--4-l&i 0 . .  0 2  0 . )  0 . 5  

c R E " L1 r P4 c Y 

(d) 

Fig. 2. Multiple cross-spectral function of four different functional groups of 
proteins: (a) glucagons; (b) hemoglobins; (c) FGF's; and (d) repressors. The 
multiple cross-spectral function of each group of proteins has a prominent 
peak representing the frequency characteristic for the biological function. 

functioning of macromolecules. The significance of the whole 
process is proposed below although the author is well aware 
that conductive electron transfer caused by the difference of 
the free electron potentials PE11 at the N and G terminals of 
the protein is beset by conditions that are firmly understood. 
According to pseudopotential, this potential difference is 

W = W(CO0H) - W(NH2) = 0.13 Ry. 
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This energy difference allows for a maximum velocity of the 
electrons which is equal to 

vk,, = JT2ew/m) 
where e is the electron charge, and rn is electron mass. 
Therefore, 

V < 7.87 x lo5 m/s. 

An inherent assumption is that amino acids in the protein are 
equidistant and the distance is 

d = 3.8A. 

Therefore, the maximum frequency that could be emitted 
during the electron transfer is 

F,,,,, < V/2d 
F,,,,, < 1 x 101’ Hz 

while the corresponding wavelength is 

L,,,i,, > 330 nm. 

The minimum frequency that could be emitted depends on the 
total .length of the protein 

where N is the total number of amino acids in the protein. For 
example, with proteins of 200 AA in length, the minimum 
frequency is 

F,,,;, < 1 x 10l3 HZ 

and the corresponding wavelength is 

L,,, < 30000 nm 

The range from 30000 nm to 300 nm is very wide, starting 
from the very low infrared through the visible to the ultraviolet 
regions. This is only an estimate of the possible frequency 
range of the field that could be emitted by charge transfer 
through the backbone of proteins. A more precise estimation 
could only be made with biological experiments. Known 
experimental results have been needed to reach this aim. They 
are now deciphered. 

C. Correlation of the RRM Characteristic Frequency with 
Absorption Characteristics of Light Absorbing Proteins 

The RRM model is based on the concept that the biolog- 
ical function represents a resonant energy transfer from one 
biomacromolecule to another [35]. However, the function of 
some proteins is directly related to the absorption of visible 
light of defined wavelengths. Thus, correlation is expected 
between the absorption spectra of proteins and their RRM 
spectra with a predetermined frequency range. Such correlation 
has already been demonstrated in previous studies [16], [17] 
and it is now summarized. 

The light is absorbed effectively on a prosthetic group bound 
to the protein. however, frequency selectivity in this process 
is defined by the protein itself. For example, rhodopsins which 
have the same prosthetic group within proteins of similar but 

TABLE 111 
CORRELATION BETWEEN CHARACTERISTIC RRM FREQUENCIES 

AND VISIBLE-INFRARED ABSORPTION MAXIMA OF 
DIFFERENT GROUPS OF PHOTOSENSITIVE PROTEINS [ 161 

Protein Wavelength Frequency Relative RRM K 
Group (nm) (cm-1) frequency 

Cy1.C 415k20 24.096i117 0473_6).W3 196 
Blue 430+25 23.256+1278 0.475H.004 204 
Green 540k30 18.518+974 0 355+0.004 192 
Red 570+30 17.544+877 0 346H.004 197 
Hemoglobin 14770+30 6 7 7 ~ 2  0.023@.007 295 
Purple 860+35 I1.628+455 0.281fl.02 24 1 
Flavodoxin 470i30 21.275+1275 0 379@.004 178 

The groups are formed according to their characteriitlc absorption maxima. Cy1 C (cyiochromes 
C ) ,  blue (group of proteins absorbing blue light: blue rhodopsin and bioluminescent proteins); 
green (green light absorbing chlorophylls and rhodopsin); red (red-light absorbing rhodopsm); 
Purple (purple light absorbing proteins from purple bacteria); The second column represents the 
Wavelengths (nm) of characteristic absorption of the groups of photosensitive proteins, while the 
third represents the same data in cm-I units. The fourth column conmns characteristic RRM 
frequencies f oflhe same groups of proteins while the fifth column contains coefficient K,  the 
scaling factor between numerical frequency space of RRM and the wavelengths h (nm) of real 
frequency rpace: h = Wf The mean value of coefficient K i i  K=201 with a standard deviation of 
I S  % 

different primary structures can absorb different wavelengths, 
e.g., there are three different variants of rhodopsins, one for 
the absorption of each color: red, blue and green [36]. As the 
biological function of these molecules is to absorb particular 
wavelengths (colors), their grouping was affected on this basis. 
Thus, the rhodopsin responsible for the absorption of blue light 
was compared with the bioluminescent protein aequorin which 
absorbs at similar wavelengths [37]. In the corresponding 
multiple cross-spectrum, there is only one prominent peak 
at frequency 0.475 f 0.004, and this is the most likely 
peak to be related to the absorption of blue light. In the 
same manner, it is estimated that the frequency of 0.355 f 
0.004 is related to the absorption of green light, and the 
frequency of 0 . 3 4 6 - f  0.004 to the absorption of red light. 
The numerical frequencies obtained similarly by the RRM for 
various other groups of visible light-absorbing proteins are 
compared with their corresponding characteristic absorption 
frequencies in Table 111. A result of considerable significance 
is that the scaling factor between these two sets of data is 
almost constant at the mean value of K = 201. Thus, a 
strong linear correlation would seem to exist between the 
numerical characteristic frequencies defined by the RRM and 
the experimentally determined frequencies corresponding to 
the absorption of electromagnetic radiation of such proteins. 
From this correlation, it can be observed that the full range 
of wavelengths which can be related to RRM characteristic 
frequencies is over 400 nm. This finding is in complete accord 
with the frequency range previously associated with the RRM 
spectra and calculated from the charge velocities through the 
protein backbone. It can be now inferred from both correlations 
that approximate wavelengths in real frequency space can be 
calculated from the RRM characteristic frequencies for each 
biologically related group of sequences. Furthermore, these 
calculations can be used to predict the wavelength of visible 
and near-infrared irradiation which may produce a biological 
effect. 

The situation is slightly different for Cytochrome B where 
characteristic RRM frequency was found to be at 0.059 and 
for Myoglobin where characteristic frequency was found to 
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be at 0.082. According to the RRM, it is expected that they 
would have absorption at 3400 nm and 245 1 nm, respectively. 
On the other hand, it is known that there is an absorption 
in the visible light range, for Cytochrome B at 423-427 nm 
and for Myoglobin at 533-582 nm. As there are not any 
data on absorption in Cytochrome B and Myoglobins within 
expected very low frequency ranges (on the order of a value 
in thousands of nm), we cannot conclude that these proteins 
are an exception or that, possibly, they have even stronger 
absorption at predicted low frequencies. 

D.  Correlation of the RRM Characteristic Frequency with 
Low lntensiry Light Effects on Cell Proliferation 

The frequency selectivity of many light induced biological 
processes is directly caused by the quantum-mechanical ener- 
getic states of photosensitive molecules. There is considerable 
evidence to suggest that the induced change of the energy 
states of biomacromolecules (such as the effect of ultraviolet 
and visible light on primary photoacceptors) leads to the 
modulation of some biological processes in cells [38]. There is 
also considerable evidence that low intensity light irradiation 
at precisely defined wavelengths (frequencies) can produce 
defined, frequency-dependent effects on living systems in vivo 
or in vitro. The correlation between the frequency selectivity 
of light induced biological processes and RRM characteristics 
of biomacromolecules involved in these processes has been 
described for the case of cell growth and proliferation [16]. 
These results are summarized in Table IV, where light ir- 
radiation frequencies which have been shown to effect cell 
growth are compared with characteristic RRM frequencies for 
different groups of growth factors normally involved in these 
cell proliferation processes. The linear correlation was again 
obtained with the same regression factor as that found for 
light absorbing molecules. The most illustrative comparison is 
the one between expected wavelengths, calculated from RRM 
frequencies using correlation obtained with light absorbing 
molecules and measured wavelengths which can produce 
certain biological effects. 

The same graph (Fig. 3) shows results of the comparisons 
between RRM characteristic frequencies for light absorbing 
proteins and their absorbing characteristics on the one hand, 
and between RRM frequencies of different groups of growth 
factors and frequencies of light irradiation which can produce 
effects on cell growth on the other. It can be observed that 
in both cases there is the same linear correlation. Strikingly, 
this correlation was already exhibited in the same coefficient 
(scaling factor) of K = 201 between RRM frequency space 
and corresponding light wavelengths in nm [ 141, [ 151. It can 
be represented as follows: 

= Klfrrrn 

where X is the wavelength of the light irradiation in nm which 
can influence a particular biological process (cell growth or 
light absorption), firm is the numerical frequency obtained 
by the RRM, and K is the estimated coefficient of the linear 
correlation obtained. All these results lead to the conclusion 

TABLE IV 
CORRELAI'ION BETWEFW CHARACTERISTIC RRM FREQLENCIES OF FlVF Gnoi,w 
OF GROWTH REC~LILATING FACTORS AKD 7 HE LOW-INTENSITY LIGHT IRRADlATlON 

FRFQllENClES 'WHICH PRODUCE SIGNIFICAUT EFFECTS ON CELL GROWTH [ 161 

tirourh Effect obsened Characteristic Expected Wavclength of 
factor ohserved RRM frequency wabelcngth "mum 
gKWp fc & (n,n, effect (nm) 

IGF, DNA synthesis (1.492kO 008 406ch 5 400 

FGF, DNA 5ynthcu5 0.453t0004 441 5 441.6 
Therapeutic effects 441.6 

maulmDNA \ynthesis0.344+0 16 5 R I l i l O  552 

growth DNA synthev\ 0.293+0 O l h  682.bk35.4 633 
factors ATP synthesis 650 

GH, PLF) 

PDGFI Therapeutic eflect 0 24ZtO 00.3 826k26 830 

(EGF, CSF, Therapeutic effect 633 

Second column represent5 biological effect observed under l a w  irradiation of particular frequency 
presented in the fifth column. The third column contains RRM characterislic frequencies ot 
different graw,th factor groups l isted tn the first column The fourth column list the real frequency 
rpace wavelengths corresponding according to the relation. h=?Ol/f. to the calculated numerical 
RRM frequencies It can be obsened that expected *avelenglhs calculated using the RRM and 
above relation, are tn a complete agreement with the wavelength5 whlch can produce maximum 
biological effcct 

that specificity of protein interactions is based on the resonant 
electromagnetic energy transfer at a frequency specific to the 
interaction observed. 

E. Correlation Behveen Predicted and Measured 
Characteristic Frequency of Chymotrypsin Activation 

As discussed above, there is evidence that biological pro- 
cesses can be induced or modulated by irradiation with char- 
acteristic frequencies [38], [39]. This is directly caused by 
light-induced changes of the energy states of molecules and, 
in particular, of proteins. Consequently, one may infer that 
biological processes can be influenced by an external radiation 
of defined frequency. The strongest support for this idea em- 
anates from the experiment described by Biscar [39] where it is 
shown that protease activity of a-chymotrypsin is significantly 
increased in the presence of a near infrared beam of defined 
wavelength. These phenomena are discussed here in terms of 
the RRM which suggests that protein activities, i.e., protein 
interactions) are based on the resonant electromagnetic energy 
transfer within a range of infrared and visible light [ 161, [ 171. 

The RRM was applied to the example of chymotrypsins 
which belong to the group of proteases [40]. Their common 
biological function is hydrolysis of proteins. Chymotrypsin 
is synthesized as one chain, chymotrypsinogen, which after 
cleavage results in a fully active enzyme, n-chymotrypsin. 
Cross-spectral analysis of five active chymotrypsins from 
different origins (bovine, human, rat, vop, and oriental home) 
revealed a common frequency component at f = 0.2363 
i 0.004 with S / N  = 35. This frequency component can 
be considered a characteristic specifically associated with 
chymotrypsin activation rather than with its protease activity. 
In comparison with the other proteases, a different frequency 
(f = 0.377 f 0.004) was obtained as general protease 
characteristic [ 141. [ 171. Using the relation between RRM 
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111. APPLICATIONS OF THE RRM 

Once there is an understanding of the nature of protein 
interactions and their selectivity, one can use the knowledge 
to benefit molecular biology and consequently, medicine, 
pharmacology and agriculture. In general, the following pos- 
sibilities emerge: a) to predict functionally important amino 
acids, so-called “hot spots,” within the protein sequence, and 
thus propose effective mutations; and b) to design peptides 
with the desired spectral and consequently, functional charac- 
teristics. These applications of the RRM are described now in 
a number of examples. 
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Fig. 3.’ Graphical presentation of the correlation between RRM frequency 
space and real frequency space. The abscissa represents the dimensionless 
RRM frequencies (in the range C O S ) ,  while the ordinate represents real 
frequencies (cm-’ ) in the visible and near-infrared region of the electromag- 
netic spectrum. Each functional group of proteins is denoted by a rectangle 
whose sides represent calculational uncertainties in the RRM frequency space 
and experimental errors in the real frequency space. The unshaded rectangles 
represent results from the relation between the light absorption characteristics 
of photosensitive proteins, while the shaded rectangles represent the relation 
between frequencies of low-intensity laser irradiation causing effects on cell 
growth and proliferation (DNA formation) and Characteristic RRM frequencies 
of different groups of growth factors. A linear correlation between RRM 
frequency space and real frequency space is evident. 

frequency and light irradiation wavelength: X = 201/frr,, 
obtained previously, the expected light wavelength which 
can influence chymotrypsin activation was calculated to be 
851 nm. However, Biscar [39] has reported an experimental 
increase in chymotrypsin activity by a factor greater than 
two under infrared irradiation of wavelength 855 nm. The 
activity of the enzyme was unaffected (equal to the control 
in the absence of irradiation) outside the range 850-860 nm. 
As can be observed from our results, the light wavelength 
predicted by the RRM as characteristic of chymotrypsin acti- 
vation is exactly within the measured value for chymotrypsin 
activation. This result explicitly supports the idea that the 
RRM characteristic frequencies represent specific oscillations 
of electromagnetic field within the infrared and visible range 
which are crucial for protein activity and interactions. This 
result also reinforces linear correlation between the RRM 
frequency space and wavelengths of biologically effective 
light irradiation with a correlation coefficient of X = 201. 
With this coefficient in mind, it is now possible to calculate 
wavelengths of light irradiation which, it is proposed, will 
affect other biological processes. The triggering or control of 
some biological processes in the cell by irradiating them with 
light of a defined wavelength is then also possible, and indeed 
would seem to occur. 

A .  Prediction of “Hot Spots” 

Knowing the characteristic frequency of a particular protein 
function, it is possible to predict which amino acids in the 
sequence predominantly contribute to this frequency and, 
consequently, to the observed function. Since the characteristic 
frequency f(x) correlates with the biological function 2, the 
positions of the amino acids that are most affected by the 
change of amplitude at the frequency f(x) can be defined as 
“hot spots” for the corresponding biological function z. The 
strategy for this prediction includes the following steps: 

1) Determination of the unique characteristic frequency for 
the specific biological function analyzed by multiple 
cross-spectral analysis for the group of protein sequences 
with the corresponding biological function. 

2 )  Alteration of the amplitude at this characteristic fre- 
quency in the particular numerical spectrum. The crite- 
rion used for the identification of the critical character- 
istic frequency change is the minimum number of “hot 
spot” amino acids which are least sensitive to further 
changes in the-amplitude of the characteristic frequency. 

3) Derivation with DFT of a numerical sequence from the 
modified spectrum. 

It is known 1301 that the amplitude change at one frequency 
in the spectrum causes changes at each point in the numerical 
sequence. Thus, a new numerical series is obtained where each 
point is different from the original series. Determination of 
the amino acid corresponding to each element of this new nu- 
merical sequence can then be achieved from tabulated values 
of EIIP. The amino acids in the new sequence, which differ 
from the original ones, reside at the points most important 
for the frequency f(x).  These “hot spots” are related to this 
frequency and to the corresponding biological function. The 
procedures described have already been applied to a number 
of examples: previous studies with interleukin-2 [ 151, SV40 
enhancer [ 141, tumor necrosis factors (TNF’s) [41], Ha-ras 
p21 oncogene product [19], [41], glucagons [Cosic et al., 
unpublished results], hemoglobins, myoglobins and lysozymes 
[ 1 81, all have documented evidence that such predicted amino 
acids denote residues crucial for protein function. Furthermore, 
in the examples studied to date [ 181-[20], these amino acids 
are found to be spatially clustered in the protein tertiary 
structure, and to be positioned in and around the protein active 
site. 

The prediction of “hot spots” with typical results is now 
described for the case of Cytochrome C proteins. Their com- 
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Fig. 4. Multiple cross-spectral function of 38 Cytochrome C proteins. The 
prominent peak is located at a frequency of 0.476 f 0.004 with S/AY = 252. 

mon biological function is electron transfer through excitation 
of the heme group which is positioned in the active site cleft 
within the protein 3-D structure [42]. Cross-spectral analysis 
of 38 Cytochrome C proteins from different origins revealed 
the common frequency component at the f = 0.476 * 0.004 
with SIN = 252 (Fig. 4). Consequently, the “hot spot” amino 
acids in the tuna heart Cytochrome C were determined at the 
positions: 41, 45, 56, 77. Although these amino acids are not 
sequentially linked, they form spatial cluster in the protein 
3-D structure which is positioned around the protein active 
site cleft (Fig. 5).  In numerous other examples, it was found 
that “hot spot” amino acids were clustered around the active 
site of the protein as well [18]-[20]. Since “hot spots” are the 
amino acids where the resonant characteristic frequency signal 
is dominant, the cluster of “hot spots” may define specific sites 
in the 3-D structure of a protein which act as a resonator for the 
characteristic frequency. This resonator is located just around 
the active site cleft, and thus it can be considered a resonant 
box which provides the optimum conditions for the resonant 
energy transfer at the frequency characteristic for the protein 
function. As a consequence, the active protein conformation 
can be predicted to provide the optimal resonant conditions 
for a particular frequency characteristic, thus dictating the 
specificity for protein biorecognition with its target and the 
subsequent energy transfer, which defines the functional selec- 
tivity of the biomolecular interaction. At this stage, it is still 
not clear what the relationship is between the RRM and protein 
3-D structure. The result that protein is folded in such a way 
that amino acids are clustered together and positioned around 
the active site where characteristic frequency is strongest can 
have some implication on the protein overall structure but not 
necessarily to the local structure of the active site. 

B .  Peptide Design 

Following the determination of the characteristic RRM 
frequency and corresponding phases for particular biological 
functions, it is possible to design amino acid sequences which 
will have only those spectral characteristics. It is then expected 
that these peptides will have the desired biological activity. 
The strategy for the design of such defined peptides is as 
follows: 

1) Determination of the characteristic unique frequencies 
for the specific biological function or interaction ana- 

# 

Fig. S. Cytochrome C (tuna heart) 3-D structure in backbone presentation. 
Predicted “hot spot” amino acids are highlighted with shaded VDW surfaces. 
Predicted “hot spot” amino acids are clustered in a space around the active 
site cleft. 

lyzed by multiple cross-spectral analysis for the group 
of protein sequences with the corresponding biological 
functions, as described above. 

2) Definition of the characteristic phases at the characteris- 
tic frequencies for the particular protein which is chosen 
as the parent for agonist/antagonist peptide design. 

3) Derivation of a numerical sequence from the knowledge 
of characteristic frequencies and phases. This is done 
by summation of sinusoids of particular frequencies, 
amplitudes and phases. The length of the numerical 
sequence is defined first, by appropriate frequency res- 
olution which allows different characteristic frequencies 
to be separated and second, by the peptide length desired. 

4) Determination of the amino acid corresponding to each 
element of this new numerical sequence can then be 
achieved from tabulated values of EIIP. Peptides ob- 
tained in this way will have the desired spectral char- 
acteristics and are purported to have the corresponding 
biological activity. The applications of the above strategy 
are now presented. 

C. Design of Glucagon Agonists 

Design procedures are demonstrated here in an example 
with human glucagon. The aim was to design shorter pep- 
tides with the same biological function. Application of the 
RRM analysis to 13 different glucagons from 18 species 
and seven different glucagon-like peptides revealed a single 
prominent peak in the cross-spectral function at frequency f = 
0.3242 AI 0.034 ( S / N  = 70.54). The frequency component at 
f = 0.3242 was common to all analyzed glucagon-related 
polypeptides, and therefore could be considered the consensus 
frequency characteristic of these polypeptides for a common 
biological property, for example, the potential to stimulate 
glycogenolysis. 

The next step was to define the active site of human 
glucagon. With the characteristic frequency of glucagons 
defined, it was possible to identify amino acids in human 
glucagon sequence which are the major contributors to the 
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characteristic frequency. The locations of these predicted 
amino acids are within the known functionally important 
regions of the human glucagon sequence. Three of these 
predicted amino acid residues (Gly 4, Thr 5 and Thr 7) are 
located within the N-terminal region, known to be critical 
for the transduction of the biological message. The other two 
amino acid residues (Phe 22 and Thr 29) are located at the 
C-terminal of human glucagon, previously shown [43]-1451 to 
be primarily involved in receptor recognition. This correlation 
between the RRM predictions and experimentally derived data 
provides additional evidence that the concepts implicit in the 
RRM model can be employed as an aid to the prediction 
of the contribution which a specific amino acid residue may 
make to the global arrangement of a biorecognition site of 
a polypeptide. 

In order to examine the spatial disposition and topology of 
these predicted amino acid residues, an appropriate solution 
structure for human glucagon was needed. A currently ac- 
cepted model for human glucagon in solution is the Kom and 
Ottensmeyer model 1461 which is based primarily on solution 
measurements, i.e., CD, fluorescence quenching, and NMR. 
as well as Chou-Fasman 171 secondary structure predictions. 
Based. on our investigations, a modified model of human 
glucagon structure in solution was suggested. The model 
resulted from conformational simulations using molecular me- 
chanics and dynamics [lo]-[ 121. This stable conformation 
represents local energy minimum which can be achieved 
under the 300°K conditions, i.e., energy conditions which may 
approximate those in the living cell. This simulated human 
glucagon conformation agreed well with previous experimen- 
tal observations, as well as with the Kom-Ottensmeyer model, 
in terms of the compact overall structure with the N -  and 
C-terminus crossing each other and the general shape of the 
backbone structure 1461. 

Consequently, this simulated structure was used as a model 
of the tertiary structure of human glucagon in solution in 
order to investigate the spatial disposition of the functional 
key amino acid residues predicted by the RRM procedure. 
In the case of human glucagon, these predicted amino acids 
were found to be clustered along one face of the structure 
of the globular polypeptide, forming an arch across the N -  
and C-terminal regions and the hydrophobic cleft (Fig. 6). 
This result strongly supports earlier conclusions reached with 
a number of other polypeptides and proteins, that such key 
amino acid residues predicted by the RRM procedures are 
located in spatially clustered regions in the tertiary structure of 
the polypeptide or protein and denote a specific biorecognition 
or interaction site. 

With a glucagon characteristic frequency, it was then pos- 
sible to design a variety of polypeptide analogs having this 
spectral characteristic only [ 171, [22]. In particular, several 
polypeptides were designed to satisfy the criterion that their 
RRM spectra exhibited only the frequency f = 0.3242. 
It is important to note that no significant homology exists 
between these derived peptides and human glucagon, while 
these peptides all show very high mutual sequence homol- 
ogy. The structures of these peptides were then subjected to 
molecular mechanics and dynamics simulations using the same 
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Fig. 6. Predicted 3-D structure of human glucagon in backbone presentation. 
Predicted “hot spot” amino acids are highlighted with shaded VDW surfaces. 
Predicted “hot spot” amino acids are clustered in a space around the active 
site cleft. 

procedures as for human glucagon. Simulated structures of 
these peptides were then compared, in terms of their backbone 
superimposition, onto the structure of the human glucagon 
interaction site, encompassing the cluster of key amino acid 
residues (Gly 4, Thr 5, Thr 7, Phe 22, and Thr 29). The 
goodness of fit was then determined from the root mean square 
deviation (RMS) of the peptide backbone from that of the 
corresponding interactive region of the human glucagon. 

The best fit, RMS = 1.98 A, for the peptides in the range of 
15-mer to 20-mer was found for the 18-mer peptide with the 
following primary sequence: LCRIQDGQDEWDPYDHKD. 
The predicted 3-D structure of the designed 18-mer peptide 
is comparable in backbone topography to the structure of 
glucagon active site, while it is not similar in primary structure 
to any sequentially linked fragment of human glucagon. Since 
biorecognition sites of a protein are usually composed of 
amino acids which are not contiguously linked, the folded 
structures of predicted peptidic analogs should mimic the 
overall shape of the binding site, rather than have primary 
structures which are simply homologous to sequentially linked 
fragments of the protein under examination. 

Finally, the additional studies are necessary in order to 
characterize the biological properties of synthetic peptide 
analogs developed from the composite computational approach 
described above. Such biological evaluations have been suc- 
cessfully applied on a few examples up to now, including 
design of HIV envelope protein immunological analogs [47], 
as well as fibroblast growth factor (FGF) antagonist [21]. 

D. Design of FGF Antagonists and Some Experimental Results 
The proliferative and angiogenic potential of FGF-B has 

been documented during embryogenesis, vascularization of the 
ovary and related reproductive tissues, in pathological states 
such as wound healing, tissue repair and tumor development 
and expansion 1481. The angiogenesis of solid tumors is one of 
the FGF functions which is of great interest. By preventing this 
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angiogenesis activity, it would be possible to prevent tumor 
growth as well. The design and synthesis of highly specific 
peptide analogs capable of interacting with FGF receptors may 
provide a therapeutic mode for the prevention and treatment 
of solid tumor angiogenesis. In these studies, RRM was used 
to define frequency characteristics of FGF’s responsible for 
mitogenic activity and receptor recognition. 

Multiple cross-spectral function of the three acidic and four 
basic FGF’s (Fig. 7(a)) reveals one prominent peak at the 
frequency-fl = 0.4512 f 0.005 (S IN  = 120). In order 
to determine if this frequency is relevant for FGF receptor 
recognition, further comparison with two FGF receptors, flg 
and bek, was established. The resulting multiple cross-spectral 
function shows that frequency f l  is even more prominent 
(SIN = 215), while the other frequency components were 
diminished. From these data, it can be concluded that fre- 
quency f l  is relevant for the recognition between FGF’s and 
their receptors. The other frequency component f 2  = 0.255 
f 0.002 was found to characterize the biological activity 
of competence growth factors including FGF’s (Fig. 7(b)). 
Thus, in the case of the FGF’s, it was possible to distin- 
guish receptor recognition from growth promoting activity 
in -terms of different characteristic frequencies. Consequently, 
peptides designed to have receptor binding characteristics 
without growth promoting activity incorporate a frequency 
component at f l  = 0.4521 omitting a frequency component 
at f2 = 0.256. Using the peptide design module of RRM, a 
number of peptides satisfying the frequency conditions were 
designed with lengths of 10 to 24 amino acids. The procedure 
was the same as described for glucagons. 

Molecular modeling techniques were then applied to the 
designed peptides with the aim of identifying their stable 
structures. The proposed structures were then compared with 
the 3-D structure of the FGF 97-120 fragment, which is 
known to be a receptor binding domain. Although no sequence 
homology exists between the designed peptides and the FGF 
97-120 fragment, a high structural similarity was detected. On 
the basis of RMS deviations between the predicted backbone 
structures, a peptide 16 amino acids in length (FGFRRM16) 
was found to be the most similar, RMS = 1.37 A, to the FGF 
97-120 fragment. The predicted 3-D structures of FGF frag- 
ments 97-120 and FGFRRM16 are presented in Fig. 8. The 
proposed amino acid sequence of FGFRRM16 is: MWYR- 
PDLDERKQQKRE. The designed peptide FGFRRM 16 was 
synthesized and its function was tested experimentally. 

Fibroblast cultures were used for testing the bioactivity 
of FGFB peptide antagonists since FGFR exerts stimulatory 
effects on DNA synthesis and proliferation of these cells in 
vitro [21]. These observations were confirmed in both 3H- 
thymidine incorporation and cell proliferation bioassays with 
a dose-dependent stimulation of tracer uptake and proliferation 
of fibroblasts in culture. The peptide itself exerted no effect 
on 3H-thymidine uptake or the proliferation of fibroblasts 
in culture, however, in the presence of a stimulatory dose 
of FGFB (25 ng/mL), peptide FGFRRM16 antagonized the 
actions of FGFB, inhibiting tracer incorporation and the prolif- 
eration of fibroblasts in vitro. Cell proliferation bioassays were 
consistently more sensitive than DNA synthesis bioassays with 
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Fig. 7. Characteristic RRM frequencies of fibroblast growth factors (FGF’s). 
(a) Cross-spectral function of five FGF’s (three acidic: human, bovine, rat, and 
two basic: human and bovine). The prominent peak is at a frequency f = 
0.4512 f 0.005 with.S/,V = 121. The same frequency peak is prominent in 
the multiple cross-spectral function of five FGF’s plus two FGF receptors (flg 
and bek) but with higher signal-to-noise ratio S/1’ = 215. (b) Cross-spectral 
function for five FGF’s and four Interleukins 1 ,  Both groups of proteins belong 
to the wider functional group of competence growth factors. The common 
frequency component was found at a frequency f = 0.255 f 0.002. 
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Fig. 8. Backbone structures of (left) FGF active site (97-120 fragment) and 
(right) FGFRRM16 peptide. Although there is no sequence homology between 
them, their 3-D backbone shapes are comparable. 

doses of 0.5 mg/mL FGFRRM16 antagonizing and 2mg/mL 
FGFRRM 16 totally blocking FGFB stimulated proliferation of 
fibroblasts. It is important to note that while DNA synthesis 
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Fig. 9. HIV envelope characteristic frequencies. (a) Multiple cross-spectral 
function of envelope proteins gp 160 from 21 HIV isolates (lavl/bru, hxb2, 
11143, sf2, sc, mn, rf, wmJ2, cdc451, ny5, jh3, brva, eli, mal, z6, z2z6, 
23, z321, j y l ,  ndk, oyi). Prominent peak was obtained at frequency f = 
1855 + 0.001 with S / N  = 484. (b) Multiple cross-spectral function of 
regions from gp 120, which are crucial for binding to CD4, 44 amino acid 
in length, from 11 HIV isolates (lav, arv2, eli, ny5, wmj2, mal, 23, 3cg, 
cdc45 1, hxb2, hat). Cross-spectral analysis reveals that those regions share 
the same characteristic frequency as gp160 env protein but also have their 
own prominent characteristic at a frequency f 2  = 0.2188 0.022. 

continued at 2 mg/mL FGFRRM16, this replication of DNA 
was not translated in terms of proliferation of fibroblasts. These 
experiments were performed by Dr. A. Drummond (Monash 
University, Australia) and detailed experimental procedures 
and results are presented in [21]. 

E. Design of Peptides Able to Mimic HIV Immunogenicity 

The interaction between HIV virus envelope proteins and 
CD4 cell surface antigen has a central role in the process of 
the virus entry into the host cell. Thus, blocking the interaction 
between the envelop glycoproteins and CD4 surface antigen, 
known to be the HIV receptor, should inhibit infection. We 
have applied the RRM model to analyze these interactions [ 171 
and, consequently, to design peptide capable of mimicking 
the HIV envelope gp 160 protein immunorecognition function. 
Prior to designing peptide analogs capable of functioning as 
HIV-CD4 interaction inhibitors, it was necessary to define 
the characteristics of the gp160 HIV envelop proteins crucial 
for their interaction with CD4. Despite the high sequence 
variability between different isolates, it can be said that at least 

one specific characteristic has to be common for all different 
isolates. 

Envelop proteins from 21 HIV isolates (lavlbru,  hxb2, 
n143, sf2, sc, mn, rf, wmj2, cdc451, ny5, jh3, brva, eli, mal, 
26, 2226, 23, 2321, jyl ,  ndk, oyi) were analyzed using the 
RRM procedure with the aim of defining a common frequency 
characteristic. Only one prominent peak was obtained in the 
cross-spectral function at frequency f l  = 0.1855 & 0.001 
with SIN = 484 (Fig. 9(a)j. This frequency component was 
common for gp 160 glycoproteins for all HIV isolates analyzed. 
According to RRM concepts, it can be suggested that this 
frequency characterizes the common biological behavior of 
all analyzed proteins, i.e., recognition and binding to CD4. To 
validate this idea, the CD4 molecules (human and mouse) were 
compared with the previously obtained cross-spectral function 
of 25 gp160 HIV envelop proteins. The prominent peak at 
the same frequency f l  = 0.1855 occurs but the signal-to- 
noise SIN ratio is significantly higher, implying that CD4 
molecules also share the same frequency characteristic. This 
is completely in accordance with our previous findings, 1131, 
[15], [20] in a number of examples, that protein ligands and 
their receptors (irrespective of whether they are protein or 
DNA targets) share the same characteristic frequency which 
defines their mutual recognition. 

Regions from gp 120 which are crucial for binding to CD4 
[SO], 44 amino acid in length, from 11 HIV isolates (lav, arv2, 
eli, ny5, wmj2, mal, 23, 3cg, cdc451, hxb2, hat) were also 
analyzed. Cross-spectral analysis reveals that those regions 
share the same characteristic frequency as the gp 160 env 
protein, but they also have their own prominent characteristic 
at frequency f 2  = 0.2188 f 0.022 (Fig. 9(b)). To provide 
confirmation as to whether one or both of the characteristic 
frequencies characterize interaction between HIV envelope 
and CD4 antigen six peptides, each of 20 amino acids in length 
with the following spectral characteristics, were designed: 

I )  Peptide A:  KQQYYWYAWCQPPQDQLIMD: Spectrum 
consists of two frequencies f l  = 0.1855 and f 2  = 0.2188, 
with the phases of these frequencies opposite to the phases 
characteristic for the LAVl gp120 region. 

2) Peptide B: LKRDQEPMDFHIWDDYLKRD: Spectrum 
consists of the one frequency only, f l ,  with its phase opposite 
to the phase of the LAVl gp120 region. 

3)  Peptide C:  TPPTDWLADRHEMDQNKDDK: Spectrum 
consists of the one frequency only, f a ,  with its phase opposite 
to the phase of the LAVl gp120 region. 

4 )  Peptide D: DDALYDDKNWDRAPQRCYYQ: Spectrum 
consists of both characteristic frequencies, f l  and f 2 ,  with 
the same phases as in the LAVl gp120 region. 

5)  Peptide E:  DFHIWDDYLKRDQEPMDFHI: Spectrum 
consists of the frequency f l  with the same phase as in the 
LAVl gp120 region. 

6) Peptide F: TDWIYDRHEMDQNKDDKNQD: Spectrum 
consists of the frequency f 2  with the same phase as in the 
LAVl gp120 region. 

It is important to note that the frequency f l  was also found 
to be significant in the spectra of p55gag and gp4lenv HIV 
proteins, while the frequency f 2  was found to be significant in 
the spectra of pl8gag HIV proteins. Thus, it can be anticipated 
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that the designed peptides, besides their reactivity relative to 
the LAVl gp120 env protein, may have a reactivity relative to 
the other HIV proteins listed. 

To validate the RRM predictions, the designed peptides were 
chemically synthesized and their immunoreactivity experimen- 
tally tested. Biological experiments with immunogenicity of 
synthetic peptides were conducted by Dr. V. Krsmanovic and 
Dr. J. M. Bicquard (CNRS, France). These investigations were 
performed initially by evaluating the reactivity and cross- 
reactivity of all six designed peptides with the corresponding 
antibodies. These results have shown that significant cross- 
reactivity to the polyclonal antibodies raised against peptides 
which share at least one Characteristic frequency and phase at 
this frequency can be observed. In contrast, antibodies raised 
against peptides which do not share a common frequency and 
phase at this frequency do not show significant cross-reactivity 
(see [47]). These results give experimental confirmation of 
the concept that RRM frequency characteristics reflect impor- 
tant parameters associated with biomacromolecular recogni- 
tion and, in particular, antibody-antigen recognition. 

Furthermore, to ascertain whether any of the proposed 
frequency characteristics are important in determining the 
interaction between HIV envelope proteins and CD4 surface 
antigen, the reactivity of antibodies raised against the designed 
peptides and LAV HIV viral proteins was investigated [47]. 
These results show clearly that the peptide D is able to induce 
polyclonal antibodies in rabbits which can be captured by 
all gag-related env-related proteins of the HIV-1, except the 
pl5-gag protein. This cross-reactivity of the anti-D serum is 
compatible with the existence of the common RRM spectral 
characteristic(s) which the peptide D shares with the HIV- 
1 proteins. If we consider that peptide A has the same 
frequency components as peptide D but opposite phases at 
those frequencies, and that anti-A antisera does not react with 
any of the HIV proteins, it can be concluded that phases 
at characteristic frequencies are also important parameters in 
biomolecular recognition. Furthermore, peptide E has only one 
frequency component, f l ,  and the phase at f l  is the same 
as that for peptide D. Since anti-E antisera does not react 
with HIV proteins, we can deduce that f l  is not a critical 
frequency for recognition between CD4 antigens and HIV 
proteins. Nevertheless, at this stage, it is possible to indirectly 
propose that frequency f 2  = 0.2188 zk 0.022 characterizes 
the recognition between CD4 antigens and HIV proteins. 
More generally, we can conclude that RRM frequencies, 
together with their corresponding phases, are important physic- 
ochemical parameters that characterize specific biorecognition 
processes. 

IV. CONCLUSION 

This review paper presents a complete model of selective 
protein interactions relevant to their biological function. The 
physical nature of the protein biological function is its ability 
to selectively interact with a particular target. The selectivity of 
these interactions is explained in terms of the resonant energy 
transfer between interacting molecules. It is predicted that 
these energies are electromagnetic in nature. Consequently, 

the characteristic resonant frequencies for a number of differ- 
ent interactions, i.e., biological functions, were theoretically 
calculated. Initially, these calculations were based on the 
following key finding: Proteins with the same biological 
functions have common periodicities in the distribution of 
energies of delocalized electrons along the protein. With 
this in mind and taking into account the conductive properties 
of the protein backbone, the theoretical model of biologically 
relevant protein resonances was established. These resonances 
were calculated to be in a very wide frequency range, including 
infrared and visible light. In order to justify these propositions, 
calculated resonant frequencies for the particular protein func- 
tion were compared with the characteristic frequencies of the 
light absorbing and light activating proteins. Complete agree- 
ment was reached. The model presented generally describes a 
new view of biologically relevant intermolecular interactions, 
which are suggested to consist in a resonant energy transfer 
between interacting molecules. Although it is possible to 
calculate characteristic frequencies for particular interactions 
or biological functions, the complete physical basis of these 
interactions is still not completely understood. Nonetheless, 
with the knowledge of characteristic frequencies for a particu- 
lar interaction/function, it is possible to predict active site and 
functional mutations, and to design bioactive peptides with the 
desired function. This could have great impact on molecular 
biology and, consequently, for medicine. pharmacology, and 
agriculture. The fact that completely new, nonhomologous, 
but biologically active, peptides were designed solely from 
a knowledge of characteristic frequencies is further evidence 
that these theoretically calculated frequencies are, in fact, 
the critical parameter for protein biological functions, i.e., 
selective interactions. This also provides indirect proof of the 
whole concept of resonant energy transfer between interacting 
biological molecules. 
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